If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-100x-51=0
a = 1; b = -100; c = -51;
Δ = b2-4ac
Δ = -1002-4·1·(-51)
Δ = 10204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10204}=\sqrt{4*2551}=\sqrt{4}*\sqrt{2551}=2\sqrt{2551}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-2\sqrt{2551}}{2*1}=\frac{100-2\sqrt{2551}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+2\sqrt{2551}}{2*1}=\frac{100+2\sqrt{2551}}{2} $
| 2.5x=0.5=6.25 | | x2−9x+18=2x+8 | | 4*2x+8-4x=4x+8 | | 9x+5=9x+6 | | X2+4y2-16=0 | | 5^2x-1=25 | | -32=5u-2 | | 2(5r-5)+4=-12+2r+9(2r-6 | | 2m-{+1}=0 | | x-7.28=9.7 | | 2x-1+3x=5 | | -3x+4x=-24 | | 3b+82=13 | | 2(2-n)=-11 | | 129675809.80÷x=6483790.49 | | 20x+(−14)=1 | | 18=14+(4x-14) | | 54.6=8.4x | | 10b=100000 | | 5x+12=67* | | 4^2-n=1/2048 | | 41=6y-4 | | 3×+2y=84 | | 5x-7=8(-5x+16) | | 88+54+x=180 | | 7+3x=5+-15 | | 8-7k=7k+10 | | 5x-7=-40x+128 | | 3x−324=x−433x−324=x−43 | | 3x−3/24=x−4/33x−324=x−43 | | 80=8a+184 | | 12-3n=6-2n |